

Concept Design of a Child-Seat by TRIZ Style Problem Identification

Masao Ishihama & Minami Hamada Automotive Technology Center Kanagawa Institute of Technology

1. Background of the Study

- Safety of child-seats for motor vehicles is a matter of national concern.
- Only a few child-seat brands have passed safety regulations set by Japanese government.
 Unsatisfactory practical usability is frequently
 - reported.
- However, problems to solve were not so clear for the authors to start designing.

2. Defining Our Design Problems

- Problem Formulation of TRIZ style was used.
- Expected functions and unexpected or harmful functions of child-seats were listed.

Functions are investigated separately according to child-seat using scenes and stakeholders' interests.

Scenes analyzed

Installation into a passenger compartment Loading and unloading of a child Vehicle acceleration and deceleration Riding over rough road surfaces Eating and drinking Playing on the seat Collision

Stakeholders considered

Child

Parent who care the child
Driver and the other passengers
Producer of the child-seat
Producer of the vehicle
Government officer

Installation into a passenger compartment

This work is not frequent.

 Mounting brackets for fitting child-seats became popular in recently developed cars.
 Identified as a less serious problem

Loading/unloading of a child

Hard job for parents.
Side guards block smooth loading & unloading of a child.

Vehicle acceleration and deceleration

Highly frequent situation.

- Need to protect the child from neck injury.
- Strong influence on ride comfort.
- High seat-back and tight seat strap are conventional unsatisfactory solutions.

Turning corners

Highly frequent situation.

- Need to protect the child from neck injury.
- Strong influence on ride comfort.
- Side-guard is a conventional unsatisfactory solution.

Riding over rough road surfaces

Highly frequent situation.

- Need to protect the child from neck injury and motion sickness.
- Strong influence on ride comfort.
- Direct control on vibration insulation and damping is possible by child-seat design.

Eating and drinking

Help by parent is necessary sometimes.

- Parent's service is quite awkward due to their restricted body movement.
- Need free torso movement of the child, but restricted by seat straps.

Collision

- Vital function of protecting the child and other passengers.
- Restraining the child's body is necessary avoiding head collision against front seatback.
- Front, side and rear impact need to be considered.

Defined problems to solve

Easing the parent's labor in loading/unloading their child.
Reducing vibration of the child.
Restraining the child in collision while giving him/her free movement in normal conditions.

3. Resource Analysis

Around the child seat:

- * Wider space than those for adult passengers.
- * Information on CAN (LAN on a car) that tells potential collision beforehand.

4. Defining Contradictions

Side-guard function: Between the two movement of the child, such as easy loading vs. constraining lateral movement. Between the two functions: Vibration isolation (supporting flexibly) on rough roads and restraining tightly at collision. Free movement for eating/drinking and tight restraint at collision.

5. Inventive Principles used and Conceptual Design Embodied

"Segmentation" Separating seat and support.

- "Dynamicity"
- "Spheroidality, Counter-weight & Self-service.

"Universality"

90 degree horizontal seat turn for loading.

Swinging motion for vibration absorption and child attitude control

Realize the above function by spherical hollow surface for a seat pad..

6. Sketch of the Design -1

6. Sketch of the Design - 2

Movement in loading/unloading

- Move to other dimensions
- Balancing

A seesaw and snap action mechanism automatically pushes up or pulls down the side guards by the child's weight.

Vibration control action

Dynamicity
Mechanical vibration
Division

Vibration isolation by setting the natural frequency low Lateral vehicle vibration

Movement in collision

Moving to a new dimension.

Receiving G at collision by the seat pad rather than seat belts.

Prior action.

 Utilizing deceleration signal from CAN and tightening the belts.

Conclusions

- Conceptual design of a child seat was created that solves vital problems of conventional products.
- The TRIZ function and attribute analysis identified successfully the problems to solve that were hard by conventional methods.
- Resource analysis found the key factors of child seat design.
- These tasks were easily achieved by a graduate student who studied TRIZ just a few weeks.