Use of TRIZ for Prediction of the Future of Technological Systems

Boris Zlotin, TRIZ Master Ideation International Inc

The Fifth TRIZ Symposium in Japan, 2009

Over 60 Years of Development initiated and led by G. Altshuller and involving hundreds of scientists and inventors

Feedback from solving with TRIZ thousands of problems

History of evolution in different areas of technology and science, social systems, business, management, art, languages, etc.

Evolution Eras and Managing the Future

Ideation Operating System for Innovation

Directed Evolution®

A systematic procedure for strategically evolving future generations of technological systems

Failure Analysis

A systematic procedure for identifying the root causes of a failure or other undesired phenomenon in a system, and for making corrections in a timely manner. Determination

Anticipatory Failure

Failure Prediction

A systematic procedure for identifying beforehand, and then preventing, all dangerous or harmful events that might be associated with a system. FD . K PS CIP Management of Intellectual Property A systematic procedure for increasing IP value and providing protection from infringement and

from infringement and circumvention.

A systematic procedure for resolving tough technological problems, enhancing system parameters, improving quality, reducing cost, etc. for current generations of products and

Solv

Problem

nventive

technologies.

Problem Solving versus Directed Evolution

- Inventive Problem Solving (IPS) = reactive way of evolution
- DE = Directed Evolution = pro-active way of evolution involving timely transition to the next evolutionary step avoiding the majority of problems inherent to the existing system

The Purpose of Directed Evolution: Building Sustainable Competitive Advantage by developing a comprehensive set of logically sequenced scenarios that enables the planning and on-going development of technological and business systems.

Directed Evolution®

- A systematic process to predict the future generations of a system by inventing them, and
- A systematic approach targeting the identification of a comprehensive set of potential evolutionary scenarios for:
 - Products/Services/Processes
 - Technologies
 - Organizational structures
 - Industries
 - Markets

Perfect Systems – Desired Result of Directed Evolution

Throughout history, only a limited number of technological systems have possessed the outstanding qualities that allowed them to enjoy enormous success over an unusually long life. We name this kind of systems "*Perfect*" or "*Consummate systems*".

Volkswagen Beetle

DC-3 in service June 2006

Singer sewing machine

Kalashnikov Machinegun

Marketing Tornado – Desired Result of Directed Evolution

Riding Marketing Tornado - Way to Success

The History

Technological Forecasting (1950's)

 Utilizes probabilistic modeling of future characteristics of various systems

TRIZ Forecasting (1970's)

 Utilizes selected TRIZ-based tools to generate an idea(s) helpful for the next product or process generation

I-TRIZ Anticipatory Failure Determination (1980's)

 Utilizes selected TRIZ-based tools to predict and prevent possible undesired events emerging in the process or a as a result of evolution

Directed Evolution (1990's)

 Utilizes extended set of Patterns/Lines of Evolution to generate an exhaustive set of potential scenarios of system positive evolution

Evolutionary Approach versus Traditional Trial & Error Method

Evolution

Psychological Inertia

Product

Trial & Error in evolution: Traditionally, majority of trials fail because they are influenced by psychological inertia.

Evolutionary Approach: Majority of trials are productive because they follow defined Patterns of Evolution. **Psychological Inertia**

How Can One Control Evolution?

Influence on the system at crisis point

Caesar and Napoleon, Bismarck and Churchill, Lincoln and Roosevelt – all shrewd and successful politicians used controlling evolution through influencing the system at crisis points

Non-Linear Evolution and Forecasting

DE is Based on Patterns of Evolution

- Systems evolve not randomly, but according to objective patterns
- Patterns can be identified based on the analysis of historical development of technology, markets and social trends
- Identified patterns can be purposefully used for system development, avoiding numerous blind trials

Patterns of Evolution: Common threads between evolving systems.

Patterns of Evolution: The History

- 1960s strongest principles from the 40 Innovation Principles set by Genrich Altshuller (Dynamization, Self-service, etc.)
- 1975, spring the first set of Patterns of Technological Evolution by Genrich Altshuller (Static-Kinematics-Dynamics)
- 1975, fall Boris Zlotin started teaching Patterns of Technological Evolution in St. Petersburg
- 1981 first hierarchical structure (sub-patterns or lines of evolution) by Boris Zlotin
- 1989 new system of patterns of evolution published in the book Searching for new ideas by Altshuller, Zlotin, Zusman and Filatov
- 2009 updated system of patterns of evolution utilized in the Directed Evolution software

Evolution Toward Increased Dynamism

Line: Transition to Multifunctional Performance

Increasing system dynamism allows functions to be performed with greater flexibility or variety

Line: Increasing Degrees of Freedom

Field (action, influences) evolution Changes of fields

1. Mechanic field

2. Thermal field

3. Chemical field

4. Magnet field

5. Electrical field

- 6. Electromagnetic field
- 7. Combination of fields

Remember!

M Th Ch E M

Fields combinations

Μ

Copyright 2001-2009 Ideation International Inc.

Evolution direction

Assessment of Evolutionary Potential

Ideation Directed Evolution [®]Process

Copyright 2001-2009 Ideation International Inc.

New Existing Recent

Directed Evolution®

Directed Evolution® software is a professional tool to support the process for building a comprehensive set of prognostic scenarios of evolution of technological and/or business systems based on patterns of evolution and inventive problem solving

Directed Evolution Software

OK Exit			
Times New Rom 🔽 12 💌 100% 💌 🍠 🖇 🧤 🖏 🍼 🖪 🗶 型 🛕 票 蒂 君 🗄 谭 谭 🗿			
Directed Evolution Process	Using Main Patterns of Evolution		
1. Project Initiation	The Patterns of Evolution represent a compilation of trends that document strong, historically-recurring tendencies in the		
1.1. Project name	development of man-indue and natural systems. A Pattern usually contains <i>Lines of Evolution</i> that describe in greater		
1.2. Expectations	detail typical sequences of stages (positions on a Line) that a system follows in the process of its natural evolution. Once these positions are known, the sustaints current position(s) on a line can be identified, and the possibility of transitioning		
1.3. Project objectives	to the next nostition(s) can be assessed		
1.4. Importance of the Situation			
1.5. Criteria for selecting solution concepts	1. Evolution towards increased Ideality		
2 Eveness Directed Evolution	2. Evolution towards increased involvement of resources		
2.1 Paris Derevities of DE situation	3. Evolution of man-made environment.		
2.2. Ideal vision	4. <u>Non-uniform development of system elements (Contradictions)</u>		
2.3. Revealing and solving main problems	5. Evolution towards increased dynamism		
2.4. Using Main Patterns of Evolution	 <u>Evolution towards increased complexity followed by simplification</u> 		
2.5. Using Bank of Evolutionary Alternatives	8 Evolution with matching and mismatching elements		
2.6. Developing Express DE Concepts	9. Transition to multi-level		
3. Detailed description of the situation	10. Transition to more effective use of fields		
3.1. Supersystem - System - Subsystems	11. Evolution of "evolution of man-made systems"		
3.2. Input - Process - Output	12. Evolution of application and marketing		
3.3. Cause - Problem - Effect			
3.4. Past - Present - Future	No Diagram 1		
4. Resources, constraints and limitations			
4.1. Available resources	Directed Evolution		
4.2. Allowable changes to the system	Select the Directions you want to work with then movement application application application		
4.5. Constraints and initiations	steet Submit		
5. Evolutionary patterns and lines			
5.1. General patterns of technical evolution	Consider possible qualities of Courtesting		
5.2. Useful filles of evolution 5.3. Basic general trends	engine in the direction of the system		
5.4. System of Standard Solutions	dealization.		
6 Developing DE Concepts	child a way to change Composition angline to		
6.1. Checking cause-effect diagrams	F 2 make more effective vehicle movement and		
6.2. Combining ideas into concepts	to avoid <i>harmful exhaust</i> .		
6.3. Developing concept descriptions	Consider possible undesired results of high volume of birds of a hidrogen production hidrogen		
6.4. Developing lines for the system	Image: Figure 3. evolution of Combastion engine and ways to		
7. Evaluating DE results	prevent that.		
7.1. Ranking generated concepts	Consider possible evolution of <i>vehicle</i>		
7.2. Meeting criteria for evaluating a concept	Image: High consumption Low efficiency of the system Image: High consumption Low efficiency of the system		
7.3. Revealing potential problems	idealization.		
7.4. Preventing typical mistakes	Consider possible undesired results of		
9. Disputing the implementation	E 5. evolution of <i>vehicle movement</i> and ways to electricity		
o. Planning the implementation	prevent that.		
8.1. Developing evolutionary scenarios	Consider the possibility to convert undesired		
o.2. supporting the process of evolution	harmful exhaust into useful or to prevent,		
file:///C:/Program Files/Directed Evolution 2.2/IWB-DE/2 Express DE for project scope estimation/2 1 Using Main Patterns of Evolution.htm	6. reduce or eliminate it and all other undesired		

Directed Evolution Software Tools

Copyright 2001-2009 Ideation International Inc.

Directed Evolution for Massage Systems

Directed Evolution Project

Evolution of Detergent for Washing Processes

Technology + Business

Hybridization of Washing Processes and Detergent Evolution (Co-Evolution)

DE for Competitive Intelligence

 Utilization of Directed Evolution techniques for Competitive Intelligence allows unveiling all promising directions for evolution for a given area, estimating which directions could be selected by competitors based on information about their traditions, experiences and specific resources.

 It is possible to establish basic criteria and events as early indicators confirming preliminary conclusions. Monitoring and analyzing competitors' publications, statements made by employees, new products, patents and other information from open sources will allow verification of predictions.

Directed Evolution for Enhancing Decision-Making Ability

Ideation International I-TRIZ Publications

Who is "Director of Evolution"?

I-TRIZ Master – has evolutionary Intuition, can lead complex DE projects

I-TRIZ Specialist – can lead IPS, AFD and selected DE projects, adjust TRIZ tools for specific projects

I-TRIZ AFD Practitioner – can participate in complex problem solving projects with combination of IPS and AFD (Failure Analysis and Failure Prediction)

I-TRIZ IPS Practitioner – can participate in complex problem solving projects

I-TRIZ User – can solve "light" creative problems

Thank you!

blzlotin@ideationtriz.com

Vehicle of the Future

Energy Consumption and Waste per One Mile for Different Vehicles

Evolution of Integrated Systems

Start of the system evolution

Success of the first system generation

Loser's integration

2+3+4

Different systems compete at the start

System 1 – winner, competitors are frozen System 1 – loser, systems 2,3,4 win together

First Big Evolutionary Shift

Attention!!! This is only the start of Hybridization!

First Patent on Hybrid Car Henri Pieper 1909

Evolution of Hybrid Systems

Comparison of Vehicle Elements

LOSer

Combustion Engine versus Turbine Engine

Loser

1961 Chrysler TurboFlite

Problems of turbine engine	Combustion engine	Turbine engine	Possible solutions for problems in turbine engine
Problem 1 Narrow zone of turbine efficiency	Efficiency	rpm	Problem is solved via utilization of hybrid in which the engine always works in optimal regime
Problem 2 Complicated design of transmission for turbine	~2000 rpm	>30.000 rpm	Problem is solved via utilization of electrical transmission and the motor- wheel system
Problem 3 High temperature of flame		Turbine blades must be made from very expensive material with high thermal resistance	Problem is solved via utilization of ethanol with lower burning temperature
Problem 4 Complicated and expensive design		Very high precision of treatment is necessary	Problem is solved via utilization of bladeless trubine

Comparison of Vehicle Elements

Mechanical power train **Electrical power train** >30000 rpm ~6000 rpm max Battery Mechanical transmission Electrical Alternator Motor/Alternator

Two-directional electrical current flow:

- Battery rotates motor in normal situation
- Motor/alternator charges battery in braking

OSer

Russian truck Бел АЗ-549 with electrical power train

Electrical Motor + Wheel

Japan

Bladeless Turbine Engine

Southwest Research Institute (SwRI) have developed and built a radial flow gas turbine that is very rugged, low-cost and easy to repair.

Systems for Hybridization

Futuristic Hybrid Car

