

Introduction of the collaborative activity of KT Method & TRIZ to improve Hard Disk Drive's Quality and Reliability

Kazushi Tsuwako

Hitachi Global Storage Technologies Japan, Ltd. C&C HDD Advanced Platform Development

Copyright © 2010, Hitachi Global Storage Technologies, All rights reserved.

1. Back Ground

3.5"HDD is using an air spoiler to minimize the disk vibration.

3.5" HDD's capacity increase required a bigger air spoiler. But a bigger air spoiler increases serious data damage on the disk.

New product "J" which had a bigger air spoiler was required some actions to cover for the disk damage.

2. Air Spoiler's Function and Issue

Comparison of Disk damage by contamination (Product "G" & "K")

Product "G" Damage Area

Product "K" Damage Area

Most of all disk damage were under a air spoiler.

3-1. Problem Analysis of OD Scratch 1/3

同語の明確化 / 同語	前の明細化			
3 State	区別点と変化の確認			
Identify the root cause area of new 3.5" HDD	Distinction			
問題の明細化	feels, smells IS		related, or was wrong, at other times IS NOT	 Peculiarities and differences about the "IS" and "IS NOT" columns
WHAT(何に)				
対象は?	New 3.5" HDD	1	Old 3.5" HDD	Areal Density Increase
		2	New 2.5" HDD	Alminum Disk, Air Spoiler, Higher RPM
差異(欠陥)は?	Scratch Increase @OD	3	No Scratch @ID	Higher RPM
	Spiral Scratch @OD	4	Head Crush @OD	Head treads on contamination @OD -
WHERE(どこで)				
地理的な場所は?	OD & MD area	5	ID area	Higher relative speed
対象のどの部分で?	Surface with Air Spoiler	6		Crosscurrent on the
	Under Air Spoiler	7	Under Actuator	disk

問題の明細化	起きた事実 IS		起きてもよさそうなのに起きて いない事実 IS NOT	Distinction
WHEN(いつ)				
最初に起きたのは いつからか?	New 3.5" HDD	8		Areal Density Increase
どのような場合に 起きたのか?	Just after POR	9		Contamination on disk
	After Load/Unload	10		Easily trend on the big Contamination
EXTENT(どの程度	£)			
どれくらいめ 数量か?	5 fail out of 1,000 HDDs	11		
どのような傾向か?	Increase	12	Decrease	

Assumed Cause based on Distinction	Test by IS/IS Not			
Sensitivity of Media against scratch is getting higher and higher due to capacity increase. And the relative speed between head and disk is highest at OD area.	1 2 3 4 5 6 7 8 9 10 11 12 000			
The air spoiler create the crosscurrent (Karman voltex). This crosscurrent accelerates nano-particle to accrete the disk. (MPC?)	1 2 3 4 5 6 7 8 9 10 11 12 000000 000 0 0 0			
Some asperities remained on the disk. Some of them escaped from the disk MFG process, some of them were generated by Cobalt migration on the disk.	1 2 3 4 5 6 7 8 9 10 11 12 0 4 0 0 0 × 0 0 0 0 0			

If higher recording density or asperity on the disk is root cause, they can not explain why many HE were under the air spoiler. HE increased area depends on the air spoiler, but it does not depend on the actuator. They are clearly conflicting.

Why an air spoiler accelerates accrete contamination to the disk?

Focused attention on Air Spoiler's Shape

Two-dimensional Fluid Analysis (ANSYS)

Disk Rotation Speed : 30m/s (at 40mm from the center of Disk)

An air spoiler without taper makes Karman voltex and accelerate to accrete the contamination on the disk. But an air spoiler with taper reduces Karman voltex and the contamination on the disk.

Particle Injection Test to confirm the simulation result

Air Spoiler used for Particle Injection Test

5. Qualification Result of Air Spoiler with Taper

Measurement Result of Contamination on the disk

It was confirmed that the air spoiler with taper could contain the Karman voltex and decrease the contamination on the disk.

Jumboizing Air Spoiler to improve NRRO for new product \rightarrow Concern on Contamination increase

7. Break through "PSYCHOLOGICAL INERTIA"

8. Correspondence between HDD's and TRIZ parameter

Key Word of HDD parameter	TRIZ 48 Parameters
Bit length on the Disk	Length of stationary object(4)
Error Rate	Loss of Time (26)、Loss of Information (28)
Seek Time	Duration of Action of Moving Object (12)
Weight Saving	Weight of Stationary Object (2)
Sound	Noise (29)
Thermal Stability	Stability (21)
Track Per Inch	Information (11)
Reliability	Reliability (35)
Write Fault Frequency	Loss of Information (28)、Loss of Time (26)
Power Consumption	Loss of Energy (27)
Positioning Accuracy	Reliability (35)
Rotational Waiting Time	Loss of Time (26)
Cost	Productivity (44)
Radiation	Temperature (22)
Detectability of media defect	Ability of Detect/Measure (47)
Test Time	Loss of Time (26)、Productivity (44)

- Jumboizing the air spoiler accelerate the data damage at out side area of the media by the media scratch.
- Contradiction Matrix from Inventive Principles
 - 4 x 28 (Length of Stationary Object/Loss of Information)
 - 28: Mechanics Substitution
 - 24: Intermediary
 - 3: Local Quality
 - 13: "The Other Way Around"

Introduce electric, magnetic or electromagnetic fields to interact with an object . => Conductive Air Spoiler

Inspire the N

- 4 x 35 (Length of Stationary Object/Reliability)
 - 35: Parameter Changes
 - 31: Porous Materials
 - 29: Pneumatics And Hydraulics
 - 17: Another Dimension

Enable each part of a system to function in locally optimised conditions.

=> With Taper

Air Spoiler used for Particle Injection Test

Figure	Model	Material	Surface Resistance	Cross Section
	J .	Polycarbonate	1 E16 (Insulator)	w/o Taper
		Plastic with Carbon fiber	1 E1~E3	
	J w/Taper	Polycarbonate	1 E16 (Insulator)	w/Taper
	G	Polycarbonate	1 E16 (Insulator)	w/o Taper

Measurement Result of Paricle

Significant Improvement of Particle Reduction by Conductive Air Spoiler

Why the conductive air spoiler can reduce the particle accretion?

Inspire the I

12. Failure Mechanism led by TRIZ

HITACHI Inspire the Next

Mechanism of Particle Accretion on the Disk by Static Electrical Charge

Nano-Particles with positive electrical charge gravitate toward the disk with negative electrical charge induced by the insulation air spoiler with positive electrical charge.